DIRECT AND INVERSE PROBLEMS OF THE DYNAMICS
OF SORPTION IN THE ABSENCE OF EQUILIBRIUM
AT THE PHASE BOUNDARY

L. K. Tsabek and G. M. Panchenkov UDC 541.183

The solutions of the direct and inverse problems of nonequilibrium kinetics and dynamics
of sorption were obtained. Simple methods of obtaining numerical values of kinetic and
dynamic parameters are indicated.

The direct problem of the kineties and dynamics of sorption under certain constraints has been con-
sidered by a number of authors [1-14]. The inverse problem for a given initial distribution of concentra-
tions in an unbounded infinite column (unbounded problem) was examined in [9].

We will consider below the direct and inverse problems of the nonequilibrium kinetics and dynamics
of sorption for a bounded column with a zero initial distribution and given temporal distribution of the con-
centration at the column boundary. This problem is of interest for chromatography and a number of pro-
cesses in industrial chemistry where the processes occur in bounded columns, The dynamics of sorption
in a cylindrical column filled with homogeneous symmetric porous grains is described by the following
system of equations:

kinetics of acts of sorption

0 0
——gt_ = kyc® — kyg®, (1)
material balance for symmetric porous grains
ag° ac? o’ v o )
= D,‘ — - » (2)
ot + of ( or? + r or
material balance for a cylindrical column filled with sorbent grains
dc Oc d%
— du — By e — |,y =D —— 3)
Y + o + Bg¥o ( lrea) o

with zero initial and boundary conditions of:

continuity of the external and internal flows at the grain boundary

Pole— ) =D @
symmetry at the grain center
© | —q (5)
or li—p
for frontal dynamics of sorption
¢4 (@ )], = ¢o = const,’ (6)
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for elution dynamics of sorption

Ce(z» l) |2=0 = 606 (t), (7)
ez Doy = [1—nl—14)] (8)

The effective longitudinal mixing for a nonstationary concentration field is described not by the dif-
fusion coefficient but by the dispersion coefficient

D= Dd + Dy -+ Dy, ©)

The first term in (9) corresponds to molecular diffusion in the narrow channels between the sorbent
grains [15]; the second term is due to convective mixing [16] occurring long before the appearance of tur-
bulent fluctuations in the percolating flow, turbulent mixing [17], and presence of velocity fluctuations of
the percolating flow in the porous medium [15]. The third term is governed by the nonuniformity of the
distribution of the percolation velocity of the flow with respect to the cross section of the cylindrical
column 18] ("Taylor diffusion™) and presence of stagnant zones between the sorbent grains [19-23], which
are most substantial for a liquid percolating flow. Using the Laplace integral transform with respect to
time with consideration of conditions (4), (5), we find the solution of system (1), (2) for 1 < v <2

5 ( ’ \)1,/2(1—-v) : Lijpeo—ry (A7) (1 n D, B)—-l ,

4 Lipw—n (Aa) aP, (10)
B = Aa M -}. 1 — v,
Lijptw—1y (ha)

a
The average concentration of absorbed substance with respect to the grains is q = (1 + p)a~0*?) } q%rVdr.
With consideration of (1) and (10) for the transforms we write 0

~ — k
g ma (s
P "l‘ k2

Dy B)Wl , (11)

afy

)SE@rv dr = (1+ v)(Aa)“Z(—[)jsz )BE ( 1+

since [ x(® +1)IS ®)dx = x® H)I(s +1)(x). We find the original (11) under the condition ¢ = ¢, = const (ac-
cordingly ¢ = ¢,/ p) after repeated transformations

q = key—key W P (D2(1 4 v) (L,0) 7%, (12)

n=0
where

Pn (t) = gln (gln - g‘ln)_l eXp (g?,nt) - E2n (gln - g:n)—l exp (glnz)ﬂ
Einan = — 12 (ks + ky + Did) £ [1/4 (ky + by + DA2Y — B,Dig 17

The roots Ay, are found from the characteristic equation
(@BeDi™" -+ 1— ) Sy pv—y (@) 4 Aadyav—sy (ha) = 0.

The concentration of the absorbed substance in the sorbent grain

_ O\ 2(v—1) _
q° = key — 2kc, E (ha@) 1P, (f) (E‘) Dty (hn?) S n(An2) (13)
n=~0

and the concentration of sorbate within the sorbent grain

. - £\ 1201 .
& = ¢y — 20, 2 (@) N, (1) (7) iav—n) (ea?) Tty (), (14)

n=0

where

o g n gln _}' kz gln § '!_ k,
N, (t)y =2 =in T 72 — . 5in_ [ Sen Ty
n( ) kz ( gln g?n ) eXp (glnt) k-’ ( Eln gzn ) exp (Eznt)

For ¢ = ¢g[l —n(t —ty)] @ccordingly ¢ = cop‘1 [1 —exp (—pty]) we obtain from (11)
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- k D, _\- :
={1 v y-24§_ "1 i —17y_ =
g={(1+v)(3a) (p+k2 )B(1+ 8, B) oot [1— exp (—plp)]. (15)

The solutions of (12)-(14) represent the solutions of the direct problem of nonequilibrium kinetics of sorp-
tion. To find from the usual kinetic curve (boundary conditions ¢ = ¢, = const) the kinetic curve (boundary

conditions ¢ = ¢y[l —7(t —tg)]) from which we can determine the statistical moments, we must use the re-

lationships

I (D =qO)—qglt—1), £ =g (h—qg"¢t—1),

c‘; B =c"(By—c(t—1,). (16)

To solve the inverse probiem of nonequilibrium kinetics of sorption we find the expression for the initial
a( and central moments y, from the relationships [24]

S Y/ ()~ n
&y = llm [ (.. 1) . d q*n(p) ] ’ p-n = E Cﬁ (—‘ al)k QXp_g- (17)
>0 | gy (P) dp st
With consideration of (15) we obtain after transformations
1 » 1 to ( 1 1 )( 1 1
= —F T, p= -t |— T+ =
1= PRt B, % )\ h T
2 ev+1) ,, & ] 1 )
: —_—, = _ + T —_—
+él+k2)+ wig g ™ (\kz 5%
‘ 2 2 1)
x(ri+3?—-2_) S+ 49) , 0TIy | BOLIT S
Yo ok (v-+5)(v-7) (v+39)7 (v -+ 5) &
where
=1 +ReD (VAT DT v =Bl V) (1 + R (19)

The expressions for the moments (18) are essentially the solution of the inverse problem of the kinetics
of sorption. Having determined from the experimental kinetic curves the numerical values of the moments

1 f ' T
w0 k= o [ e—ara o (20)
@, o
0 T Q

we can find the parameters 7;, v§, k, from the solution of 2lgebraic system (18).

The solution of nonequilibrium dynamics of sorption in transforms from (1), (3), (10) with con-
sideration of conditions (6)-(8) is found in the form

~ / D. —1
c(z, p)=cof(p)exp{%[ 1__-1/1—{—4Du—2 [p_{-Diso(l—}—v)a:sz 1+ aﬁ:, B) ]]}, (21)
where
fep) = pT? (frontal dynamics of sorption), (22)
Fo) =1, f(p) = F*(p) = o[ — exp(— phy)] 23)

(elution dynamics of sorption).

We substitute 21) into (17) and for f(p) = 1 we find the expressions for the first initial and four central
moments for a fixed length of the column L:

(Zl = [1 + (1 +k) 6] Lu—ly

n = 2a1{ -+ RO (1 -+ k) 6b (r,. +

w))

) k8D (5

po = O 2 - 2080+ 25,1480 (5 + "
0

— . R . -, v -3 o .
420" - ngl(vo) r) + (1 4+ &) 8b [2 %@?;'t?*'?"i(\’o) Lty 2]}
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where
b=[l4+0+B8™Y v =[1+(1-+k6Du2 (25)

The expressions for moments oy, #y, K3, py from (24) describe fully the elution curve in a form close to a
Gaussian curve [26]. Usmg conditions (23), we find the relation between the moments a4, py (they cor-
respond to f(p)) and oy, 1} (they correspond to £*(p)):

% 1 * | l 2 B}
U’i:a1+“2_tov !*2:”27‘—12—%: W3 = Us,
(26)
N 1 g, 1 o . 5 »
H4:P'4—|‘§)"f01——2“f0u2v Hs_lks‘*”'ﬁ fofts.

We see from Egs, (21), (22), (23) that the frontal and elution dynamic curves are associated by the
relationships

Pe (2 p) = C (e, p), [1—exp(—ply)lcs (2, p) = ce(@ P) 27)
or
c(z 0) = ﬁg_'-i, Sl = (5 H—cp @ E—1). (28)
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For a fixed length of the column L, the elution and frontal dynamic curves can be described by series with
a small number of terms according to Hermite orthogonal polynomials

Ce(L, ) = Y AH, (9)exp(— 1), 4= (t—a,)(2u)'7,
n=l

l ——— £
G (L, ) = (1) erf 1+ V Ty 3 Ay s 0) (1P 4 (29)
n=3
4
Jo= s erl(g) =~ 5 edt, Fog) =Hy_y (O—"H,_, (5.
Vo, v

0

Using the orthogonality of Hermite polynomials [25], we find

L e e ey,
. d v 7 (n—2k)! &! oo () (30)

1 A= 4,=0.
V 2mp, ,

e

In the presence of stagnant zones between the sorbent grains [19-23], the elution dynamic curves are
greatly "extended" and differ from the Gaussian curve, and therefore such curves can be described by
series with a small number of terms according to generalized Laguerre polynomials

(L, )= 5: N, exp (— Tt) Lf(—i—) (—s)m , (31)
=0

¢ (L =71 E N,

n
n=0 k=0

(—1)*T(n4+ HDf(m+a+1) | t
T+ )T (n—k+ DT (m+k+1) V(mTkH’ T)' %

Using the orthogonality of the generalized Laguerre polynomials [27], we obfain

N D\ (— 1w
"8 gd T (k41T (n—k-+ DT (m+k+1)

Varying the independent parameters (m), we can change the leading edge and, varying the param-
eter (7), the trailing edge of the elution dynamic curve. With an appropriate selection of the parameters
in series (31), (32), we can restrict ourselves to two or three terms.

The expressions for the moments obtained for an unbounded column [9] are more complex and differ
from (24). Thus, the expression for the first initial and second central moments is [9]

1 4D ) ‘ )

L 2D _ 1 , , L
(Zl—(]. +k6) (—u—j F), M2—~2051 (_E;-{—Ti - '}73 ) +ZTZ(1 —r-k(S) ('—u— TF
The other central moments in [9] have an even more complex form. However, for asymptotically
large lengths of columns the expressions for the moments (24) and (33) coincide. For small lengths of

columns it is necessary to use (24).

Relationships (29)-(32) represent the solutions of the direct problem of nonequilibrium dynamics of
sorption. The expressions for the moments (24) are essentially the solution of the inverse problem of the
nonequilibrium dynamics of sorption. Having determined from the experimental elution curve (we can
easily obtain the elution curve from the frontal curve by means of relationship (28)) the numerical values
for the moments, we can find parameters 6, Dj, 8, ky, D from the solution of the algebraic system. To
avoid solving a complex algebraic system it is expedient to find 6 from the equation for o4 at first, and
then record the dynamic curves for large linear velocities (in this case 7; > 1/ yf,k [28] and find k,, Dj, D
from the expressions for p, and p;. From the elution curve for a small flow velocity (in the case 13 ~ 1
/’yf,“ [28]) we can find 3, from the expression for p,. The agreement of the experimental values of 1, with
the calculated (with consideration of determination of the parameters by the method indicated above) values
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of py is the criterion of accuracy of determining the parameters, on one hand, and, on the other, of the
correctness of the given model, which correctly describes percolation of a gas mixture through a column.

NOTATION

q° is the concentration of absorbed substance per unit volume of sorbent grain;

c? is the concentration of sorbate within free space of sorbent grains;

ki, ky are the sorption and desorption coefficients, respectively;

k =k /ky;

Dy is the coefficient of (internal) diffusion within narrow channels of the sorbent grains;

v is the symmetry parameter (v = 2 for a sphere with radius a; v = 1 for a cylinder with
radius a; v = 0 for grains in the form of plates 2a thick);

By is the coefficient of (external) mass transfer on the surface of the sorbent grains;

u is the percolation velocity of flow of gas (liquid) mixture;

C is the concentration of sorbate in flow;

8= (1 —0)/ 0

8 =8y/ (v —1);

o is the portion of free space of the granular column;

Yo is the kinetic coefficient of sorption taking into account the delivery velocity of the
substance to the surface of the sorbent grains by the percolating flow and external
diffusion;

Yo =0 + B/ a;

D is the dispersion coefficient taking into account effective longitudinal mixing;

£y is the time of admission of the investigated mixture.
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